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Dynamical fidelity of a solid-state quantum computation
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In this paper we analyze the dynamics in a spin model of quantum computer. Main attention is paid to the
dynamical fidelity~associated with dynamical errors! of an algorithm that allows to create an entangled state
for remote qubits. We show that in the regime of selective resonant excitations of qubits there is no danger of
quantum chaos. Moreover, in this regime a modified perturbation theory gives an adequate description of the
dynamics of the system. Our approach allows us to explicitly describe all peculiarities of the evolution of the
system under time-dependent pulses corresponding to a quantum protocol. Specifically, we analyze, both
analytically and numerically, how the fidelity decreases in dependence on the model parameters.
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I. INTRODUCTION

Many suggestions for an experimental realization
quantum computers are related to two-level systems~qubits!.
One of the serious problems in this field is a destruct
influence of different kinds of errors that may be dangero
for the stability of quantum computation protocols. In t
first line, one should refer to finite temperature effects a
interaction of qubits with an environment@1#. However, even
in the case when these features can be neglected, error
be generated by the dynamics itself. This ‘‘dynamical nois
cannot be avoided since the interaction between qubits
with external fields are both necessary for the implemen
tion of any quantum protocol. However, the interqubit inte
action may cause the errors. Therefore, it is important
know to what extent the interaction effects may be danger
for quantum computation.

As is known from the theory of interacting particles,
two-body interaction between particles may result in the
set of chaos and thermalization, even if the system un
consideration consists of a relatively small number of p
ticles ~see, for example, the reviews@2–4# and references
therein!. In application to quantum computers, quantu
chaos may play a destructive role since it increases the
tem sensitivity to external perturbations. Simple estima
obtained for systems ofL interacting spins show that with a
increase ofL the chaos border decreases, and even a s
interaction between spins may result in chaotic propertie
eigenstates and spectrum statistics. On this ground, it
claimed@5# that quantum chaos for a large number of qub
cannot be avoided, and the idea of a quantum computa
meets serious problems.

Recent studies@6# of a realistic 1/2 spin model of a quan
tum computer show that, in the presence of a magnetic fi
gradient, the chaos border is independent ofL, and that quan-
tum chaos arises in extreme situations only, which are
interesting from the practical viewpoint. One should stre
that a nonzero gradient magnetic field is necessary in
model@6# for a selective excitation of different qubits und
1063-651X/2002/66~5!/056206~9!/$20.00 66 0562
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time-dependent electromagnetic pulses providing a spe
quantum protocol.

Another point that should be mentioned in the context
quantum chaos is that typical statements about chaos ref
stationary eigenstates and spectrum statistics. Howe
quantum computation is essentially a time-dependent p
lem. Moreover, the time of computation is restricted by t
length of a quantum protocol. Therefore, even if station
Hamiltonians for single pulses reveal chaotic properties, i
still not clear to what extent stationary chaos influences
evolution of a system subjected to a finite number of puls

In contrast with our previous studies@6#, in this paper we
investigate the time evolution of a 1/2 spin quantum co
puter system subjected to a series of pulses. Specifically
consider a quantum protocol that allows to create an
tangled state for remote qubits. For this, we explore
model in the so-calledselectiveregime, using both analytica
and numerical approaches. Our analytical treatment sh
that in this regime there is no fingerprint of quantum cha
Moreover, we show that a kind of perturbative approach p
vides a complete description of the evolution of our syste

We concentrate our efforts on the introduced quantity~dy-
namical fidelity!. This quantity characterizes the performan
of quantum computation associated with thedynamicaler-
rors. Dynamical fidelity differs from the fidelity that is
widely used nowadays in different applications to quant
computation and quantum chaos, see, for instance, Ref.@7#,
because we do not add any random variation in the Ham
tonian. Our study demonstrates an excellent agreemen
analytical predictions with numerical data.

The structure of the paper is as follows. In Sec. II w
discuss our model and specify the region of parameters
which our study is performed. In Sec. III we explore th
possibility of quantum chaos in the selective regime, a
analytically show that chaos cannot occur in this case.
provide all details concerning the quantum protocol in S
IV, and demonstrate how perturbation theory can be app
to obtain an adequate description of the fidelity in dep
dence on the system parameters. Here, we also presen
©2002 The American Physical Society06-1
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merical data and compare them with the predictions base
the perturbative approach. Section V summarizes our res

II. SPIN MODEL OF A QUANTUM COMPUTER

Our model is represented by a one-dimensional chainL
identical 1/2 spins placed in an external magnetic field,
Fig. 1.

It was first proposed in Ref.@8# ~see also Refs.@9–11#! as
a simple model for solid-state quantum computation. So
physical constraints are necessary in order to let it opera
a quantum computation regime. To provide a selective re
nant excitation of spins, we assume that the time indepen
partBz5Bz(x) of the magnetic field is nonuniform along th
spin chain. The nonzero gradient of the magnetic field p
vides different Larmor frequencies for different spins. T
angle u between the direction of the chain and thez axis
satisfies the condition, cosu51/A3. In this case the dipole
dipole interaction is suppressed, and the main interaction
tween nuclear spins is due to the Isinglike interaction me
ated by the chemical bonds, as in a liquid state nuc
magnetic resonance~NMR! quantum computation@1#.

In order to realize quantum gates and implement ope
tions, it is necessary to apply selective pulses to single sp
The latter can be distinguished, for instance, by imposin
constant-gradient magnetic field that results in the Larm
frequenciesvk5gBz(xk)[v01ak, whereg is the spin gy-
romagnetic ratio andxk is the position of thekth spin. If the
distance between the neighboring nuclear spins isDx50.2
nm, and the frequency difference between them isD f
5a/2p51 kHz, then the corresponding gradient of the ma
netic field can be estimated as follows,udBz/dxu
5D f /(g/2p)Dx'1.23104 T/m. Here we used the gyro
magnetic ratio for a proton,g/2p'4.33107 Hz/T. Such a
magnetic field gradient is experimentally achievable, see,
example, Refs.@12,13#.

In our model the spin chain is also subjected to a tra
versal circular polarized magnetic field. Thus, the express
for the total magnetic field has the form@6,10,11#,

FIG. 1. Spin model for quantum computation. Also indicated
the direction of the magnetic field~1!.
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BW ~ t !5@b'
p cos~npt1wp!,2b'

p sin~npt1wp!,Bz~x!#. ~1!

As mentioned above, hereBz(x) is the constant magneti
field oriented in the positivez direction, with a positivex
gradient~therefore,a.0 in the expression for the Larmo
frequencies!. In the above expression,b'

p , np , and wp are
the amplitudes, frequencies, and phases of a circular po
ized magnetic field, respectively. The latter is given by t
sum of p51, . . . ,P rectangular time-dependent pulses
length tp112tp , rotating in the (x,y)-plane and providing a
quantum computer protocol.

Thus, the quantum Hamiltonian of our system has
form

H52 (
k50

L21 FvkI k
z12(

n.k
Jk,nI k

zI n
zG

2
1

2 (
p51

P

Qp~ t !Vp(
k50

L21

~e2 inpt2 iwpI k
21einpt1 iwpI k

1!,

~2!

where the ‘‘pulse function’’Qp(t) equals 1 only during the
pth pulse, fortp,t<tp11, otherwise it is zero. The quanti
ties Jk,n stand for the Ising interaction between two qubit
vk are the frequencies of spin precession in theBz magnetic
field, Vp is the Rabi frequency of thepth pulse, I k

x,y,z

5(1/2)sk
x,y,z with sk

x,y,z as the Pauli matrices, andI k
65I k

x

6 i I k
y .

For a specificpth pulse, it is convenient to represent th
Hamiltonian~2! in the coordinate system that rotates with t
frequencynp . Therefore, for the timetp,t<tp11 of thepth
pulse our model can be reduced to thestationary Hamil-
tonian

H (p)52 (
k50

L21

~jkI k
z1aI k

x2bI k
y!22(

n.k
Jk,nI k

zI n
z , ~3!

wherejk5(vk2np), a5Vpcoswp , andb5Vpsinwp .
We start our considerations with the simplified case of

Hamiltonian~3! for a single pulse, by choosingwp50. We
also assume a constant interaction between nearest neig
qubits only (Jk,n5Jdk,k11), and we putVp5V. Then the
Hamiltonian~3! takes the form

H (p)52 (
k50

L21

jkI k
z22J(

k50

L22

I k
zI k11

z 2V (
k50

L21

I k
x[H01V.

~4!

In z representation the Hamiltonian matrix of size 2L is
diagonal forV50. For V5” 0, nonzero off-diagonal matrix
elements are simplyHkn5Hnk52V/2 with nÞk. The ma-
trix is very sparse, and it has a specific structure in the b
reordered according to an increase of the numbers. The lat-
ter is written in the binary representation,s
5 i L21 ,i L22 , . . . ,i 0 ~with i s50 or 1, depending on whethe
the single-particle state of thei th qubit is the ground state o
6-2
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the excited one!. The parameterV thus is responsible for a
nondiagonal coupling, and we hereafter define it as a ‘‘p
turbation.’’

In our previous studies@6# we have analyzed the so-calle
nonselectiveregime that is defined by the conditions,V
@dvk@J. This inequality provides the simplest way to pr
pare a homogeneous superposition of 2L states needed fo
the implementation of both Shor and Grover algorithms. O
analytical and numerical treatment of the model~2! in this
regime has shown that a constant gradient magnetic
~with nonzero value ofa) strongly reduces the effects o
quantum chaos. Namely, the chaos border turns out to
independent on the numberL of qubits. As a result, for non
selective excitation quantum chaos can be practically
glected~see details in Ref.@6#!.

Below we consider another important regime calledselec-
tive excitation. In this regime each pulse acts selectively on
chosen qubit, resulting in a resonant transition. During
quantum protocol, many such resonant transitions take p
for different p pulses, with different values ofnp5vk . The
region of parameters for the selective excitation is speci
by the following conditions@10#:

V!J!a!vk . ~5!

The meaning of these conditions will be discussed in n
sections.

III. ABSENCE OF QUANTUM CHAOS IN THE
SELECTIVE EXCITATION REGIME

Here, we consider the properties of the stationary Ham
tonian ~4! in the regime of selective excitation. In order
estimate the critical value of the interactionJ, above which
one can expect random properties of eigenstates, one n
to compare the typical value of the off-diagonal matrix e
ments (V/2) with the mean energy spacingd f for unper-
turbed many-body states that are directly coupled by th
matrix elements. Therefore, the condition for the onset
chaos has the form

V

2
.d f'

~DE! f

M f
. ~6!

Here (DE) f is the maximal difference between the energ
E0

(2) and E0
(1) corresponding to a specific many-body sta

u1& , and all other statesu2& of H0, that have nonzero cou
plings^1uVu2&. Correspondingly,M f is the number of many-
body statesu2& coupled byV to the stateu1&. A further av-
erage over all statesu1& should be then performed.

In fact, such a comparison~6! is just the perturbation
theory in the case of two-body interaction. Strictly speaki
the above condition in a strong sense (V@d f) means that
exact eigenstates consist of many unperturbed (V50) states.
Typically, the components of such compound states can
treated as uncorrelated entries, thus resulting in a ran
structure of excited many-body states. However, one sho
note that in specific cases when the total Hamiltonian is
tegrable ~or quasi-integrable!, the components of excite
states have strong correlations and cannot be considere
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random, although the number of components with large a
plitudes can be extremely large~see details in Ref.@6#!.

It is relatively easy to estimateM f in the regime of selec-
tive excitation. Let us consider an eigenstate ofH0 ,
u1,0,0,0,1,0, . . .,0,0,1,0&, as a collection of 0’s and 1’s tha
correspond to21/2 and 1/2 spin values. Since the perturb
tion V is a sum ofL terms, each of them flipping one sing
spin, one getsM f5L.

In order to estimate (DE) f , let us first consider the action
of V on thekth spin, and for each spin compute the relati
energy difference between the final and the initial ener
One can find that if thekth spin has the value 1/2, there a
four possible configurations of neighbor spins coupled by
perturbation

u...0,1,0 . . .&→u...0,0,0 . . .&,

u...1,1,1 . . .&→u...1,0,1 . . .&,
~7!

u...1,1,0 . . .&→u...1,0,0 . . .&,

u...0,1,1 . . .&→u...0,0,1 . . .&.

If the kth spin has the value21/2, there are also four pos
sible different arrangements,

u...0,0,0 . . .&→u...0,1,0 . . .&,

u...1,0,1 . . .&→u...1,1,1 . . .&,
~8!

u...1,0,0 . . .&→u...1,1,0 . . .&,

u...0,0,1 . . .&→u...0,1,1 . . .&,

which are the inverse transitions of Eq.~7!. Correspondingly,
the energy changes are determined by the relation,

uE0
( f )2E0

( i )u5ujk62Ju,ujku, k51, . . . ,L22. ~9!

The analysis for the border spins can be performed in a s
lar way, and one gets four possible configurations, with
following energy changes:

uE0
( f )2E0

( i )u5ujk6Ju, k50,L21. ~10!

Summarizing the above findings, and setting, for instan
np5v0, one can conclude that (DE) f can be estimated a
follows:

~DE! f5Max~ uE0
( f )2E0

( i )u!5vL212v01J. ~11!

As a result, the condition for the onset of quantum cha
can be written in the form

V

2
.

~DE! f

M f
5

vL212v01J

L
5

a~L21!1J

L
~12!

or

V.Vcr.2a1
2J

L
. ~13!

However, this critical value is outside the range of para
eters required to be in the selective excitation regimeV,a
6-3
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@see inequality~6!#. Thus, we can conclude that quantu
chaos for stationary states cannot appear in the selective
citation regime. Note that the analysis is done for a sin
pulse of a time-dependent perturbation.

IV. FIDELITY OF A QUANTUM PROTOCOL

The analytical results obtained above, show that, durin
single electromagnetic pulse, the system can be describe
perturbation theory. Indeed, if the matrix elements of pert
bation are smaller than the energy spacing between dire
coupled many-body states, exact eigenstates can be obt
by perturbation theory. Thus, one can expect that for a se
of time-dependent pulses the system evolution can also
treated making use of a perturbative approach.

In what follows, we study the system dynamics by app
ing a specific set of pulses~quantum protocol! in order to
create an entangled state for remote qubits~with k50 and
k5L21) starting from the ground state, uc0&
5u0L21 , . . . ,01,00& ~we omit the subscripts below!. Our
main interest is in estimating the errors that appear due
unwanted excitations of qubits. We show that these er
can be well understood and estimated on the basis of
perturbation theory developed for our time-depend
Hamiltonian~2!, in the parameter range where the protoc
holds.

A. Selective excitation regime and perturbation theory

Any protocol is a sequence of unitary transformations
plied to some initial state in order to obtain a final ideal st
uc i&. In this model of quantum computer the protocol is r
alized by applying a number of specific rf pulses, so that
get a stateuc r& which is, in principle, different from the idea
stateuc i&. The difference between the real stateuc r& and the
ideal stateuc i& can be characterized by adynamical fidelity,

F5u^c i uc r&u2. ~14!

Note that, in our case, the dynamical fidelityF does not
explicitly depend on a perturbation parameter added in
Hamiltonian ~2! in order to get a distorted evolution, as
typically assumed in the study of quantum chaos. Indeed,
real final state is determined by the total Hamiltonian~2!,

uc r&5Û~T!uc0&[ )
p51

P

T̂expS 2 i E
tp21

tp
H~ t !dtD uc0&,

~15!

whereT5tp is the total time to entangle spins,Û(T) is the
unitary operator given by the sequence of pulses in the
tocol, andT̂ is the usual time-ordered product. Therefore
is not possible to identify a single perturbation parameter
is responsible for a ‘‘wrong’’ evolution of the system.

The selective excitation regime is characterized by
action of pulses that are resonant with a transition betw
two energy states which differ for the state~up or down! of
one spin only. A close inspection of the time independ
Hamiltonian~4!, defines the region of parameters where
selective excitation of single spins can be performed.
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Diagonal elements of Hamiltonian~4! are given by the
eigenvaluesE0

( i ) of H0, while nonzero off-diagonal element
are constant and equal to2V/2. In order to have a resonan
transition between two energy states, their energy differe
D has to be zero. However, for each state no more than
resonant transition should be allowed. So, we require
energy differences given by Eqs.~9! and~10! to be different
from zero, apart from the wanted transition. This leads to
following set of equalities~‘‘fake transitions’’!:

J5a
k

4
when k51, . . . ,L23,

J5a
k

2
when k51, . . . ,L23,

~16!
J5ak when k51, . . . ,L22,

J5a
k

3
when k51, . . . ,L22.

From Eqs.~16! it is easy to see that the first ‘‘fake’’ tran
sition appears forJ15a/4, the second forJ25a/2, and so on
up to the last one forJf5a(L22). All these resonances ca
be avoided if we choosea@4J ~due to the resonance finit
width the conditiona.4J is not sufficient!.

Transitions can be defined according to their energy
ferenceD, ~1! resonant transitions, D50; ~2! near-resonant
transitions, D;J; ~3! non-resonant transitions, D;a.

For a@4J, each state can undergo one resonant or n
resonant transition only, and many nonresonant ones.
latter can be neglected if we choosea@V. Under these con-
ditions we can form couples of states, connected by reso
or near-resonant transitions, and we can rearrange the Ha
tonian matrix ~4! by 232 block matrices representing a
resonant and near-resonant transitions. In this way the
namical evolution of the system can be described as a t
state problem.

Using this procedure, the entire sequence of pulses ca
evaluated. Note that special attention has to be paid to
additional phase shift that arises between any two pulses,
to the change of frame. We remind that the transformat
between the rotating and the laboratory frame is given by
expression

uc~ t !&Lab5expS inpt(
k

I k
zD uc~ t !&Rot . ~17!

Indeed, let us consider an initial basis stateum& at time t
50, and find the probability for a resonant (D50) or near-
resonant (D;J) transition to the stateup& with the energy
differenceEp2Em . HereEp andEm are the eigenenergies o
the time-independent part of the Hamiltonian~2!, written in
the laboratory frame.

Setting

c~ t !5(
n

cn~ t !un&, ~18!
6-4
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and cp(0)50, after the application of a pulse for a timet
one gets, in the laboratory frame,

cm~t!5cm~0!FcosS lt

2 D1 i
D

l
sinS lt

2 D Ge2 i (Dt/2)2 iEmt,

cp~t!5cm~0!F i
V

l
sinS lt

2 D Gei (Dt/2)2 iEpt, ~19!

wherel5AV21D2.
As we can see, the parametere determined as

e5
V2

V21D2
sin2S t

2
AV21D2D ~20!

characterizes the probability of resonant and near-reso
transitions. In particular, the probability of unwanted ne
resonant transitions goes likee, and it can be reduced b
assumingJ@V. Combining all the above expression, we g
the condition~5!.

Correspondingly, the probability for a nonresonant tran
tion ~neglecting terms of the order 1/L, and assuminga
@V) is given by the parameterh @11#,

h5
V2

4a2
. ~21!

We would like to stress that even if the ideal state h
been constructed taking into account resonant transit
only, our dynamical fidelity is a measure of dynamical erro
that are due to near-resonant and nonresonant transition

Let us now briefly discuss the perturbative approach t
is based on recent studies published in Ref.@11#. The main
idea is that for eachpth pulse the unperturbed basis can
rearranged in such a way that the Hamiltonian matrix is r
resented by 232 block matrices, as described above. This
what we call unperturbedHamiltonian for a specificpth
pulse. One should note that thisunperturbedHamiltonian is
V dependent. Let us now define byV the V dependent par
that is responsible for nonresonant transition and not
scribed by the 232 block matrices. Then it is easy to obta
the unperturbed eigenstates,ucq

0&, and the unperturbed eigen
values,eq

0 , by diagonalizing each of the 232 blocks inde-
pendently.

After this step, one can compute theperturbedeigenstates
by taking into account the first-order terms only,

ucq&5ucq
0&1 (

q8Þq

^cq
0uVucq8

0 &

eq
02eq8

0 ucq8
0 &. ~22!

Note that this perturbative approach is supposed to
valid when Eqs.~16! are not satisfied, and when the erro
due to near-resonant transitions are much larger than th
rors due to nonresonant ones,e@h.
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B. Quantum protocol

Let us briefly sketch the algorithm and the particular p
tocol that was developed in Ref.@10#. Starting from the
ground stateuc0&5u0 . . . 0& and applying a number of spe
cific pulses, we would like to generate the following e
tangled state:

uc i&5
1

A2
~ u0 . . . 0&1u10 . . . .01&). ~23!

This algorithm could serve, for instance, as the first step
a more general teleportation protocol, and for an implem
tation of conditional quantum logic operations.

The algorithm can be realized in the following way~for
details see Ref.@10#!:

u0, . . . ,0&→~ u0, . . . ,0&1u1,0, . . . ,0&)

→~ u0, . . . ,0&1u1,1,0, . . . ,0&)

→~ u0, . . . ,0&1u1,1,1,0, . . . ,0&)

→~ u0, . . . ,0&1u1,0,1,0, . . . ,0&)

→ . . . →~ u0, . . . ,0&1u1,0, . . . ,1&). ~24!

Physically, the above algorithm can be done by apply
suitable rf pulses that are resonant to the desired transiti
The latter are originated from induced Rabi oscillations b
tween the resonant states.

To flip thekth spin we have to choose the frequencyn of
the rf pulse according to the relationnp5E12E2, where
u1&, u2& are the states involved in the transition andE1 , E2
are the eigenenergies of the time-independent part of Ha
tonian ~2!. For instance, for the first pulse we put,n1
5uEu1,0, . . . ,0&2Eu0, . . . ,0&u, and we have to apply it for a time
t15p/2V to get equal superposition of the states involved
the transition. For other pulses we require that the first s
(u0, . . . ,0&) remains the same~apart from an additiona
phase!, while the second state flips thekth spin. In other
words, the probability of unwanted states is due to nonre
nant transitions of both states of the right-hand side of
~24!, and to near-resonant ones of the first state only. S
cifically, the stateu0, . . . ,0& undergoes near-resonant tran
tions withD52J for each pulse, except the first one which
resonant, and the fourth for whichD54J. Also, at each
pulse the stateu0, . . . ,0& get an additional phase, see Eq
~19!. We took them into account in the definition of the ide
state, see details in Sec. IV C.

Since in the selective excitation regime we havee@h,
contributions from near-resonant transitions are much lar
than the ones due to nonresonant transitions. Our algori
consists of 2L22 separate pulses, therefore, some modifi
tions are necessary in order to be able to control small
wanted probability. For the product of probabilities this im
plies 2Le,1 and 2Lh,1, or

V

J
!A2

L
,

V

a
!A2

L
~25!

for L@1.
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Before discussing our numerical results we would like
stress that in contrast to what is mainly considered in
literature, the time for our dynamical fidelity is not an ind
pendent variable. Indeed, the length of the protocol is de
mined by the total number of qubits,L. Specifically, 2L22
pulses are necessary in order to create the entangled sta
that the protocol timeT is proportional to the number o
qubits.

C. Dynamical fidelity: Theory and numerical data

Quite unexpectedly, the dynamical fidelity~14! increases
with an increase of the Ising couplingJ, as soon asJ!a/4.
Indeed, the probability of unwanted near-resonant transiti
is proportional toe;(V/J)2 @see Eq.~20!, whereD;J for
near-resonant transitions#. Therefore, the larger isJ, the
smaller is the probability of near-resonant transitions, and
larger is the dynamical fidelityF.

In Fig. 2 we show how the dynamical fidelity~14! de-
pends on the interqubit interactionJ. For convenience, the
function 12F is shown here and below, instead ofF. Nu-
merical data have been obtained in two different ways. F
curve corresponds to exact computation of the tim
dependent Hamiltonian~2!. Data in Fig. 2~a! are compared
with those obtained from the perturbative approach
plained above.

Apart from very strong peaks@see Fig. 2~b!# for which the
dynamical fidelity vanishes, one can say that the global t
dency is an improvement of the dynamical fidelity for larg
values ofJ. However, strong oscillations occur reflecting
resonant nature of the dynamics of our system. Perfect ag
ment between perturbative results and numerical data

FIG. 2. The dependence 12F is shown as a function of the
Ising couplingJ for L56 spins,V50.118, anda5100. Full line
represents the numerical data for the dynamical fidelityF defined
by Eq.~14!, and obtained from direct numerical computation of t
system evolution.~a! Full circles stand for perturbative calculation
and full curve corresponds to numerical results.~b! The same nu-
merical results as in~a!, but for a larger range ofJ. The theoretical
expression as given by Eq.~32! is also shown in~a!.
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found for very large variations of the interaction strengthJ.
High peaks for 12F, clearly seen in Fig. 2~b!, occur for

thoseJ values given by Eqs.~16!, where quantum algorithm
fails. Thus, one should avoid these situations in a quan
computation.

As for the minima in Fig. 2~a! for which the dynamical
fidelity is close to one, they occur whene50, or, when

J5
V

2
A4k221,

wherek is an integer number. This relation corresponds
the 2pk condition @10,11,14#.

Let us now explore the dependence of the dynamica
delity on the parametera which is proportional to the gradi
ent of the external magnetic field,a5gDx@dBz(x)/dx#,
whereDx is the distance between neighboring qubits~below,
we shall refer to the parametera as the magnetic field gra
dient!. Numerical data for the dependence of 12F on a are
presented in Fig. 3. One can see that the dynamical fidelit
getting better for large enough values ofa. We already men-
tioned that fora,4J a problem may arise in the protoco
due to ‘‘fake’’ transitions. On the other side, in the regim
a@4J the dynamical fidelity reaches an asymptotic val
that depends onJ andV only, see Fig. 3.

It is also important to understand the dependence of
dynamical fidelity on the Rabi frequencyV. The data mani-
fest two specific properties demonstrated in Fig. 4. The fi
one is a global decrease of the dynamical fidelity with
increase ofV. The second peculiarity is due to strong osc
lations that occur fore50, namely, for thoseV values cor-
responding to the 2pk conditions,

Vk5
2J

A4k221
. ~26!

For theseVk values, near-resonant transitions vanish, a
nonresonant transitions remain only. Thus, the dynamica

FIG. 3. The dependence 12F as a function of the gradient of a
magnetic field is shown forL56 spins,V50.118, andJ51. As
one can see, fora,4J the fidelity is not as good as fora.4J.
6-6
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delity has maxima that provides, in principle, the best c
dition for a quantum computation.

Nevertheless, let us consider the values ofV that corre-
spond to maxima in Fig. 4. This we do in order to make
estimate in the worst possible condition for quantum com
tation. A brief analysis of the fidelity for the specific value
V5Vk will be sketched in the last subsection. As one c
see, for values ofV different from Vk , the ‘‘average’’ dy-
namical fidelity increases when the Rabi frequency
creases. This is due to the fact that the probability to gene
unwanted states~due to both nonresonant and near-reson
transitions!, is proportional to (V/D)2. Therefore, the
smallerV is, the more reliable is the algorithm. Note that t
agreement with the perturbative approach is excellent.

However, we cannot choose an extremely small value
V since it implies a large time duration of the pulset
;p/V). Note that the total time for a quantum protoc
should be kept well below the decoherence time~the latter
can be quite large for nuclear spins@15#!. Taking that into
account, an optimal choice is to choose the largest poss
value,V5V252J/A15,J, and large enough value ofa ~in
order to significantly suppress the nonresonant transition!.

D. Fidelity: Dependence on the number of qubits

Finally, we studied the dependence of the dynamical
delity on the numberL of spins in the chain. As was note
before, for a chosen protocol its length is proportional toL.
Numerical data clearly manifest a linear decrease of the
namical fidelity with the number of qubits, see Fig. 5.

Let us give now a brief analytical derivation of the depe
dence of fidelity on the number of qubits.

Given the real and the ideal final state,

uc r&5(
k

ck
r uck&, uc i&5c0

i u0 . . . 0&1c1
i u10 . . . 01&

FIG. 4. The difference 12F as a function of the Rabi frequenc
V for L56 spins,J51, anda5100. Full curve is the result o
direct numerical simulation, circles are obtained from the pertur
tive approach described in the text. Arrows show few resonant
ues ofV given by Eq.~26!.
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and using Eq.~14!, we have

F5uc0
i* c0

r 1c1
i* c1

r u2. ~27!

In Eq. ~27! the ideal coefficients are given by

c0
i 5

1

A2
eiu0

i
5

1

A2
e2 iE0T,

c1
i 5

1

A2
eiu1

i
5

1

A2
i PexpS 2 i (

p51

P

Ep(tp112tp) D ,

~28!

whereT is the total protocol time andP52L22 is the num-
ber of pulses,E0 and Ep are the eigenenergies of the tim
independent part of Hamiltonian~2!. Specifically,Ep are the
eigenenergies of the intermediate states, as given by Eq.~24!,
and tp112tp is the duration of thep pulse @ tp112tp
5p/(2V) if p51 andtp112tp5p/V if pÞ1#.

In the same way, we define

c0
r 5r0eiu0

r
, c1

r 5r1eiu1
r
,

with the above definitions the fidelity becomes

F5
1

2
@r0

21r1
212r0r1cos~Du02Du1!#, ~29!

whereDu05u0
r 2u0

i , andDu15u1
r 2u1

i .
The ideal state is defined by resonant transitions only

explained in Sec. IV A, and Eqs.~28! are easily obtained
from Eqs.~19!.

On the other side, the real state differs from the ideal o
because of the errors due to nonresonant and near-reso
transitions. In particular, the coefficientc1

r differs from the
coefficientc1

i because of errors due to non-resonant tran

-
l-

FIG. 5. The dynamical fidelity as a function of the numberL of
spins, for differentJ values andV50.118,a5100. Numerical data
~triangles for J51.945, circles forJ55.01, and squares forJ
59.99) are compared with the results from the perturbation the
~crosses!. Also shown are the best linear fits~dot-dashed lines!.
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tions only, whilec0
r differs from c0

i because of errors due t
both nonresonant and near-resonant transitions.

Since we neglect nonresonant transitions (h!1) we can
put c1

r 5c1
i .

Differently, near-resonant transitions will act onc0
r only,

giving a change in both its modulus and phase.
The change of phasea, in one pulse, for a near-resona

transition, can be obtained from Eqs.~19!,

a5arctanFDl tanS lt

2 D G2
Dt

2
,

therefore, for 2L23 pulses~since during the first pulse n
near-resonant transitions occur!, we have

Du05~2L23!a. ~30!

Accordingly, we can define in a different way the ide
state, changing the phase ofc0

i →c0
i exp@i(2L23)a#, in order

to haveDu050.
Let us notice that any phase shift between the sta

u0 . . . .0& and u10 . . . .01& can be eliminated by applying tw
additional pulses.

From Eqs.~19! we can also evaluate the error on t
modulus of the coefficientc0

r . The probability for the state
u0 . . . 0& to make a transition to an unwanted state is de
mined by the parametere, see Eq.~20!. In this way, at the
end of the protocol, we haveuc0

r u25 1
2 (12e)(2L23).

Assuming (2L23)e!1, we can write

r0;
1

A2
F12~2L23!

e

2G .
In this way Eq.~29! becomes

F;12~2L23!
e

2
. ~31!

Sincee;V2/4J2, we get

F;S 11
3V2

8J2 D 2S V2

4J2D L, ~32!

which implies a linear decrease of the dynamical fide
with an increase of the number of qubits,L. The slope is
given by the parameter

mth52
V2

4J2
. ~33!

Of course, the above derivation is valid far from th
‘‘fake’’ transitions, Eq. ~16!, and under the conditions Eq
~5! and ~25!.

Slopes in Fig. 5 have been obtained by a standard lin
fit and then compared with the theoretical onesmth , see Fig.
6.

As one can see, the agreement is very good excep
small values of the Ising interaction,J.V, where the prob-
05620
l

s

r-

ar

or

ability of near-resonant transitions becomes large, and
conditionPe!1 is not valid anymore.

Finally, let us stress that the phase correction is far fr
being trivial. Indeed, a different behavior of fidelity on th
number of qubits is found without such phase correction

Also note that, even under the 2pk conditions given by
Eq. ~26!, for whiche50 ~so that there are no errors in mod
lus caused by near-resonant transitions!, a phase error per
sists, so that, in order to improve fidelity, the same ph
correction is necessary.

E. Optimal algorithm

ChoosingV values as given by Eq.~26!, one gets that the
probability for near-resonant transition is zero,e50. So,
only nonresonant transitions lead to unwanted states. In
7 we show the fidelity as a function of the number of spinsL
for Vk50.1216. These data should be compared with
analogous ones indicated by triangles in Fig. 5.

As one can see, despite the closeness of these twV
values~less than 3% of difference!, the fidelity increases in
two order of magnitude~see different scales on they axis!. It
is clear that such preferredV values should be chosen in an
practical implementation of the algorithm. However, due
the high instability of such resonant values, see Fig. 4
detailed analysis can only be done within a more gene
study under the presence of small variations in parame
such asV,J,a. This study is currently in progress.

V. CONCLUSIONS

We have studied the model of a quantum computer c
sisting of a one-dimensional chain of 1/2 spins~qubits!,
placed in a time-dependent electromagnetic field. The la
is given by a sequence of rf pulses, corresponding to a c
sen quantum protocol that allows to generate an entan
state for remote qubits from the initial ground state. Ma
attention is paid to the analysis of the dynamical fideli

FIG. 6. Comparison between theoretical and numerical lin
slopes for the fidelity, as a function of the interactionJ, obtained for
V50.118 anda5100.
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defined as the overlap of the actual finite state with the id
one determined by the quantum protocol.

We considered the region of the selective excitation wh
the resonant excitations of specific qubits can be imp

FIG. 7. The dynamical fidelity as a function of the numberL of
spins, forJ51.945 andVk50.1216, a5100. Also shown is the
best linear fit with the slope 9.260.331026.
ci

s.

-

tt.

.

05620
al

e
-

mented by time-dependent pulses. Analytical treatment
the stationary Hamiltonian which describes the evolution
the system during a single pulse has revealed that in
selective regime the quantum chaos cannot appear. M
over, in this regime a perturbation theory can be applied
all quantities of interest.

Our detailed study of the dynamical fidelity manifests e
cellent agreement between numerical data and the pre
tions obtained in the perturbative approach. In particular,
have found how to choose the parameters in order to get
best dynamical fidelity for the creation of the remote e
tangled state. Specific attention has been paid to the de
dence of the dynamical fidelity on the numberL of qubits.
We show, both analytically and numerically, that the dynam
cal fidelity decreases linearly with an increase ofL, and we
give an analytical estimate for the slope of this dependen
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